Search results for "Particle accelerator"

showing 10 items of 180 documents

Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

2013

Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 …

010302 applied physicsIonizationMaterials scienceta114[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Particle acceleratorCharge (physics)Plasma7. Clean energy01 natural sciencesIon sourceElectron cyclotron resonanceIonlaw.inventionNuclear physicsBreeder (animal)lawIonization0103 physical sciences010306 general physicsInstrumentationComputingMilieux_MISCELLANEOUS
researchProduct

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

2019

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

010302 applied physicsMultipactor effectMaterials sciencebusiness.industryParticle acceleratorElectron01 natural sciencesSignalSecondary electrons010305 fluids & plasmaslaw.inventionOutgassingOpticslaw0103 physical sciencesbusinessNoise (radio)Microwave2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs

2018

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceta114010308 nuclear & particles physicselectronsElectron linacElectronhiukkaskiihdyttimetelektronitparticle accelerators01 natural sciencesLinear particle acceleratorNuclear physicsNuclear interactionradiation physicsCross section (physics)säteilyfysiikkaNuclear Energy and Engineering0103 physical sciencesElectrical and Electronic EngineeringEvent (particle physics)IEEE Transactions on Nuclear Science
researchProduct

Accumulation of positrons from a LINAC based source

2020

International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.

010302 applied physicsPhysicsMeasure (physics)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyGravitational acceleration01 natural sciencesLinear particle acceleratorPositroniumNuclear physicsPositronPositron plasma; Positron accumulation; Antimatter; Penning-Malmberg trap; Greaves-Surko trap; GBAR[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]AntiprotonAntimatter0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Accelerator PhysicsPhysics::Atomic Physics0210 nano-technologyAntihydrogenComputingMilieux_MISCELLANEOUSActa Physica Polonica A
researchProduct

H− extraction systems for CERN’s Linac4 H− ion source

2018

Abstract Linac4 is a 160 MeV linear H −  accelerator at CERN. It is an essential part of the beam luminosity upgrade of the Large Hadron Collider (LHC) and will be the primary injector into the chain of circular accelerators. It aims at increasing the beam brightness by a factor of 2, when compared to the currently used 50 MeV linear proton accelerator, Linac2. Linac4’s ion source is a cesiated RF-plasma H −  ion source. Several beam extraction systems were designed for H −  beams of 45 keV energy, 50 mA intensity and an electron to H −  ratio smaller than 5. The goal was to extract a beam with an rms-emittance of 0 . 25 π  mm mrad. One of the main challenges in designing an H −  extraction…

010302 applied physicsPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderParticle acceleratorElectron01 natural sciencesIon sourceLinear particle accelerator010305 fluids & plasmasIonlaw.inventionNuclear physicslaw0103 physical sciencesPhysics::Accelerator PhysicsThermal emittanceInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

2011

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsLow emittancePhysics and Astronomy (miscellaneous)Nuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]FOS: Physical sciencesbeam transport01 natural sciencesBeam characteristicslaw.inventionNuclear physicslaw0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityBeam handling010306 general physicsAccelerator Test FacilityPhysicsFocus (computing)Research Groups and Centres\Physics\Low Temperature Physics010308 nuclear & particles physicsFaculty of Science\PhysicsBeam commissioningFísicaParticle acceleratorSurfaces and Interfaces29.27.Eg 29.27.Fh 29.20.dbAccelerators and Storage RingsStorage rings and collidersCOLLIDERSTechnology for normal conducting higher energy linear accelerators [9]BeamlineTest beamlcsh:QC770-798Physics - Accelerator PhysicsBeam (structure)
researchProduct

Vertical Beam Polarization at MAMI

2017

For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{\mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}\mathrm C(\vec e,e')^{12}\mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has …

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonmedia_common.quotation_subjectVertical polarization[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]FOS: Physical sciencesElectron acceleratorElectronMott polarimeter01 natural sciencesAsymmetrylaw.inventionOpticsMøller polarimeterlaw0103 physical sciencesCompton polarimeter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.PHYS.PHYS-ACC-PH ] Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Born approximation010306 general physicsNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentationmedia_commonPhysicsWien filter010308 nuclear & particles physicsbusiness.industryParticle acceleratorPolarimeterInstrumentation and Detectors (physics.ins-det)Wien filterPolarization (waves)Electron accelerator ; Vertical polarization ; Wien filter ; Compton polarimeter ; Mott polarimeter ; Møller polarimeterPhysics - Accelerator Physicsbusiness
researchProduct

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

2014

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in ord…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Monte Carlo methodFOS: Physical sciencesSuperconducting magnetTracking (particle physics)law.inventionNuclear physicslawlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)Large Hadron Collider (France and Switzerland)Nuclear ExperimentPhysicsLarge Hadron ColliderColliders (Nuclear physics)Particle acceleratorCollimatorSurfaces and InterfacesAccelerators and Storage RingsOrders of magnitude (time)lcsh:QC770-798Physics::Accelerator PhysicsPhysics - Accelerator PhysicsBeam (structure)
researchProduct

Hippocampal dose during Linac-based stereotactic radiotherapy for brain metastases: An observational study

2017

Abstract Introduction Aim of the present study is to evaluate homolateral and contralateral hippocampus (H-H, C-H, respectively) dose during Fractionated Stereotactic Radiotherapy (FSRT) or Radiosurgery (SRS) for brain metastases (BM). Materials & methods Patients with BM   3 months, were considered for SRS/FSRT (total dose 15–30 Gy, 1–5 fractions). For each BM, a Flattening Filter Free (FFF) Volumetric Modulated Arc Therapy (VMAT) plan was generated with one or two arcs. Hippocampi were not considered during optimizations phase and were contoured and evaluated retrospectively in terms of dose: the Dmedian, Dmean, D0.1cc and the V1Gy, V2Gy, V5Gy and V10Gy were analyzed. Results From April 2…

AdultMalemedicine.medical_treatmentBiophysicsGeneral Physics and AstronomyStereotactic fractionatedHippocampal formationRadiation DosageRadiosurgeryHippocampusRadiosurgery030218 nuclear medicine & medical imagingStereotactic radiotherapyYoung AdultPhysics and Astronomy (all)03 medical and health sciences0302 clinical medicineNuclear Medicine and ImagingStereotactic radiotherapymedicineHumansRadiology Nuclear Medicine and imagingIn patientHippocampiAgedAged 80 and overRadiotherapyBrain Neoplasmsbusiness.industryRadiotherapy DosageBrain metastasesGeneral MedicineMiddle AgedBrain metastases; Hippocampi; Radiotherapy; Stereotactic fractionated; Stereotactic radiotherapy; Biophysics; Radiology Nuclear Medicine and Imaging; Physics and Astronomy (all)Volumetric modulated arc therapyRadiation therapy030220 oncology & carcinogenesisTotal doseFemaleDose reductionParticle AcceleratorsRadiologybusinessNuclear medicinePhysica Medica
researchProduct

Beam matching with space charge in energy recovery linacs

2019

Abstract Matching with space charge of an Energy-Recovery Linac (ERL) arc into the subsequent RF structure is essential to preserve beam quality. We show how to match beam envelopes and dispersion along the bends and recirculation arcs of an ERL, including space charge forces, in order to adjust the beam to the parameters of the subsequent RF structure. For a qualitative analysis, we show that one can use a beam matrix approach together with the smooth focusing approximation but with longitudinal–transverse coupling. It is also shown that the space-charge-modified dispersion plays a key role for the adjustment of the momentum compaction R 56 required for both the isochronous and the non-iso…

CouplingPhysicsNuclear and High Energy Physicsbusiness.industryMomentum compactionTracking (particle physics)Space chargeLinear particle acceleratorOpticsDispersion (optics)Physics::Accelerator PhysicsLaser beam qualitybusinessInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct